Supporting Text

Effects of Prior Distribution of R,

We examined the effects of the prior dty in three ways. First, we recalculated the posterior
distribution under three additional prior scenariosion (i) a grave scenario, with the prior median

of Ry set to a relatively high value of 15.4i)an optimistic scenario, with the prior median B

set to a relatively low value of 1.8; andi | a pessimistic scenario with the prior medianiyf set

to a moderately high value of 7 (Table 2). The median values of the optimistic and pessimistic prior
distributions reflect the low and high values Bf assumed in a previous model of smallpox (1).

An important observation is that the curvature of the prior tails is important for the length of the
posterior tails and, consequently, for the reported credible intervals (Cls). Although the posterior
point estimates and Cls consequently differ somewhat among the four sets of prior scenarios, the
comparison between the two intervention strategies nevertheless remains essentially unchanged.
Mass vaccination is always favored over trace vaccination regardless of the prior distribufign on

All other parameters’ prior distributions purposefully were made informative based on the available
literature, and, thus, we did not explore the sensitivity to those priors.

The changes in the posterior estimateggfas the prior changed were roughly what one would
expect (Table 2 and Fig. 4). In particular, there was considerable overlap across estimates of the
posterior. For Old World populations, the median value of the estimate shifted only under the
pessimistic prior, which was a result of this prior being much narrower than the other priors under
consideration (Fig. @). For New World populations, the median values were similar except under
the optimistic prior (Fig. 8), for which the median of the distribution was higher. The shift to
larger values under the optimistic prior occurred because the tail of the log-normal prity isn
essentially flat in the region for which the likelihood is also flat. At higher valudgyoft therefore
becomes increasingly difficult to differentiate between likely draw&gtinder the Markov chain

Monte Carlo (MCMC) sampler, as in Fig. 1. The long tail on the posterior reflects this lack of



information. In fact, strictly speaking, this prior is not truly optimistic, because it assigns substantial
probabilities to high values aRj.

We also considered the effect of varying speeds of diagnosis on the optimal vaccination strategy.
Specifically, we considered the effect of allowing diagnosis to occur when macales appear versus
when pustules appear (s¢ariability in the Parameters of the Vaccination Modet further infor-
mation about the stages of smallpox). This change had no effect on the percentage of draws from
the MCMC sampler that favored mass vaccination. Changes in the priors similarly had little effect
(Figs. 5-7). Finally, we compared our results to the results of Gani and Leach (2) by assuming, as
they did, that there is no uncertainty in any parameters exgg@ndo, by fixing the remaining
parameters at the same values that they used, and by using in our likelihood calculation the same
epidemic data sets that they used. Under these assumptions, the median v&jubaifGani and
Leach (2) report is very close to the median value of our posterior distribution. Additionally, the
range of Gani and Leach’s (&), values for smallpox is centered within the 35th to 60th percentile

of our posterior distribution.

R, Estimates and Model Fit

To show the fit of the susceptible-exposed-infected-recovered (SEIR) model to the epidemic data,
we simulated a series of epidemic curves by using the median and the 95%Hgldad the median
posterior estimates of the other disease parameters (Table 1), and we plotted the resulting model
predictions against four of the epidemic data sets. In interpreting the result, note that we are fitting
a common value oR, to multiple epidemic data sets. Although fitting population-specific values

of Ry to each epidemic would provide a better fit, doing so very likely would increase the overall
uncertainty inRy, reemphasizing our main point. Given this caveat, Fig. 8 shows that the 95% Cls
for Ry include most of the data, and the predictions based on the median value are also close to the

data. The model fits for the other epidemics, which are not shown, are similar in appearance.



Advantages of a Bayesian Approach

The Bayesian approach that we use allows us to incorporate information from as many data sets as
possible, including both hospital data on smallpox progression and multiple historical epidemics.
Although non-Bayesian methods such as a bootstrap of parameter values (3) may be able to in-
corporate certain features of this analysis, such methods most likely would fail to account for any
potential nonnormality or multimodality of the posterior distribution.

An additional advantage of a Bayesian approach comes from its ability to take true expert opin-
ion into account when establishing prior distributions regarding potentially unknown parameters.
For example, we relied on informed expert opinion to center the distribution of mortality rates for
Old World populations (4) and, thus, to combine the mortality data coherently with the likelihood.
Given these issues, the Bayesian framework represents a particularly promising approach for com-
bining disparate information, expert opinion, and multiple data sets when estimating the parameters

of epidemic models.

The Vaccination Model

In order to translate the uncertainty in the posterior distribution of the SEIR parameters into uncer-
tainty regarding the best vaccination strategy, we used a general queuing model proposed by Kaplan
etal (5). This model is composed of a suite of ordinary differential equations (ODES) that group
individuals into one of five states. These states comprise untraced individuals, individuals who are
in the queue to receive a vaccination, individuals who are quarantined, individuals who are suc-
cessfully traced but unsuccessfully vaccinated, and individuals who are either recovered/immune or

dead. By following Kaplaret al’s (5) notation, the equations take the following form:
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The superscripd represents untraced individuals, as opposed to the supersctiphat represents
traced individuals (See Eqb4-18). S° denotes the number of untraced susceptibles[J&mtdanotes
the number of untraced infected individuals in infected disease gtajee disease stages are then
as follows: j = 1 indicates noninfectious individuals who are showing no symptoms and who are
vaccine-sensitivej = 2 indicates noninfectious individuals who are also showing no symptoms
but who are vaccin@sensitive;j = 3 indicates individuals who are showing no symptoms but
who are infectious; finally; = 4 indicates individuals who are showing symptoms and who have
therefore been isolateds is composed of the sum @f + I3 + @3, whereQs denotes the number
of individuals in the queue who are in disease staga the above equations and those that follow,
c represents the number of contacts named per infected individuap, iarttle fraction of infected
contacts who have been nameéd.denotes the overall population size, andepresents the rate at
which individuals stay in disease stagid astly,A;(¢) is the expected number of untraced contacts
at timet and disease stagewhereasR(¢) is the reproductive rate of spread of the disease at time
t.

The time at which asymptomatic individuals enter the queue, whether they are susceptible or
infected, depends upon the vaccination strategy. Under mass vaccination, all individuals enter the
queue to be vaccinated when an outbreak occurs. Under trace vaccination, only individuals who
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have been named by an infected individual enter the queue to be vaccinated. For individuals in the

gueue to be vaccinated, the equations comprise:

Queued Individuals —
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Here @Q; represents the number of individuals that are currently in the queue,j\aigjain repre-
senting the stage of the disease that they are in. The speed at which individuals cycle through the
gueue is determined by the number of tracers/vaccinataad the rate at which individuals in the
gueue are found and vaccinated Given that there is a fixed number of individuals who are able
to trace and/or vaccinate, there is a maximum number of individuals that can be removed from the
queue. This number is determined/byn(1,n/Q), where@ = 2?21 Qj.

Febrile individuals are also subject to quarantine if identified. The equation describing their

dynamics takes the form,
Quarantined Individuals —

ax
dt

= (1 - f)hu@Qsmin(l,n/Q) — rsH — «H. (13)
Here, H represents the number of quarantined individuals who are feliritenotes the fraction
of individuals who are febrile and in stage 8js the vaccination fatality rate, andis the rate at
which febrile individuals are vaccinated.

The equations for the number of individuals who are successfully traced but unsuccessfully

vaccinated are as follows.



Traced but Unsuccessfully Vaccinated Individuals —
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Here,v; is the vaccine efficacy for stage and a superscript af denotes individuals who have
been traced but unsuccessfully vaccinated, as previously noted.
The final two equations track the number of recovered-and-immune individuals and the number

of dead. These equations take the following form.

Recovered-and-Immune and Dead Individuals —

az

= (1= Qo+ vi@umin(Ln/Q) + (- S)r(I + 1)) (19)
O = Ju@min(1,n/Q)+ 5ra(I + 1}) (20)

Here, Z and D represent the number of immune/recovered individuals and the number of dead,
respectivelys is the death rate for smallpox.

In our analyses, all values derived from the multivariate draws of the posterior are placed into
the above ODEs and used to determine the number that die under trace versus mass vaccination (see
Variability in the Parameters of the Vaccination MogeAll other values that are not derived from
the posterior are set to the parameter values in table 1 of Kaplah(5) or to more conservative
values favoring trace vaccination as described below in the sectidarability in the Parameters

of the Vaccination Model



Variability in the Parameters of the Vaccination Model

All vaccination parameters were set at Kaptral's (5) baseline rates except fpr the fraction
of contacts named, which was conservatively set to 1.0. Also, we assumed that individuals in the
early stages of the disease, specifically the first 27% of the latency stage prior to the outbreak of
the fever, can be successfully vaccinated. Another difference is that Keptn(5) assume that
the prodromal or fever period is infectious; because informed opinion suggests that it is not (6, 7),
we instead assume that the prodromal period is noninfectious. Individuals in our model therefore
are neither diagnosed as having smallpox nor automatically quarantined until they start exhibiting
obvious signs of the disease. Because the early phases of smallpox can be easily confused with
the symptoms of other infectious diseases (7), and because few currently practicing physicians have
ever diagnosed smallpox, it is unclear how rapidly infected individuals could be diagnosed. We
therefore varied the percentage of the infectious period that an infected individual could circulate
between 23% and 38% of the overall infectious period. These values correspond to diagnosis at the
macales stage, at which flat, discolored patches appear on the skin, and the pustules phase, at which
blisters form (7).

Because some have argued that the vaccination rates in Ketgdr{5) are overly pessimistic,
it was also important to consider more optimistic scenarios. We therefore considered two more
optimistic vaccination scenarios, in addition to the scenario used in the main text, and reran the
gueuing model (5) for the case in which we allow for uncertainty in all parameters. Under a mod-
erately optimistic scenario, we increased the number of traced social contacts from 50 to 300, and
we increased the number of vaccinators from 5,000 to 10,000. As Fig. 9 shows, under this scenario,
the median difference between the trace and mass vaccination strategies wheRusgtignates
based on Old World populations is reduced to 17,000, but there is still a substantial probability that
the difference will be higher than 25,000. Similarly, for New World populations, the median differ-

ence between the two strategies is reduced to 181,000, but there is still a substantial probability that



the difference will be higher than 1 million. Under a wildly optimistic scenario, we increased the
number of traced social contacts from 50 to 1.25 million, and the number of vaccinators from 5,000
to 125 million. As Fig. 10 shows, under this scenario, trace vaccination is more effective than mass
vaccination when we usB, estimates based on Old World populations, because trace vaccination
is virtually identical to mass vaccination. Nevertheless, when weligsestimates based on New
World populations, there is still a strong possibility that trace vaccination will produce 1 million or

more additional deaths relative to mass vaccination, and uncertainty is still very high.

Absolute Number of Deaths Under Each Vaccination Strategy

For brevity, in the main text we show the effects of the two vaccination strategies in terms of the
difference in the number of deaths between the two. In fact, the absolute number of deaths under
mass vaccination is very small, especially compared to trace vaccination; moreover, most of the
uncertainty in the difference in the number dead is due to uncertainty in the number dead under
trace vaccination. To show this uncertainty, in Fig. 11, we show the distribution of the number
of dead for both mass and trace vaccination wignis estimated from Old World populations,

and in Fig. 12, we show the corresponding distributions wRgris estimated from New World
populations. As the figures show, almost all the variability in the difference in the number of dead

between the two strategies is due to variability in the number of dead under trace vaccination.

Heterogeneity in Susceptibility: Impacts onR, and Vaccination

As we describe in the main text, increasing model complexity by adding an additional parameter
to account for heterogeneity in susceptibility among individuals had little effect on our results. As
Table 1 shows, the 95% credible interval &9, the equivalent of?, for the model with hetero-
geneity, has a reduced upper bound relative to the median for the model without heterogeneity, but
the medians of the two distributions are nearly the same. This assumption suggests that the only

meaningful change is a reduction in the tail of the distributiorRgf indeed, Fig. 13 shows that
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the two distributions are very similar for both the previously exposed Old World and previously
unexposed New World populations. As a result, there is little or no change in the distribution of the
difference in the number of dead under the two vaccination strategies, as shown by a comparison of
Fig. 14 to Fig. 3.

This lack of difference between the outcomes of the two models is further reflected in the overall
number of deaths under mass and trace vaccination for both Old World and New World populations
(Fig. 15 and Fig. 16 as compared to Fig. 11 and Fig. 12, respectively). Increasing the model's

complexity thus has little effect on the uncertainty in the number of dead under the two strategies.

A Simple Method of Including Variability in Susceptibility in the SEIR Model

In order to model the effects of heterogeneity in a population’s susceptibility, we used a moment-
closure approach (8—10). Under the assumption that individuals vary in their susceptibility to the

disease, the SEIR model becomes:

oS Ro’Y

5 = 5T (21)
dE
dt
dl
dt
dR
dt

_ Il/ RoS(Ro,t)dRy — aE,
N Jo
= oF —vI,

= vI .

The moment-closure method reduces the partial differential equation 21Eqg.a set of ordi-

nary differential equations. First, we define:

S, = / R{S(Ro, t)dR, (22)
JO

whereS; is thejth moment ofS(Ry, t). By differentiating Eq22 with respect to time and substi-

tuting from Eqg.21, we get:



ds;
If we definem; = S;/S, to be thejth moment of the frequency distribution of susceptibility,

and differentiaten ; with respect to time, we have:

dmj

i —I(mj+1 - mjml) . (24)

Recall thatn is the mean of the distribution of host susceptibilities. We therefore have replaced
the partial differential equation in EQ1 with an infinite series of ordinary differential equations,
such that each moment is a function of a higher-order moment. To approximate the higher order
moments and, thus, close the moments, we assume that the coefficient of variation remains constant.

This finding turns out to be a reasonable approximation for most initial distributions of susceptibility

(10). If k is defined as the inverse squared coefficient of variation then:

2
o= — (25)

Thus, by substituting EQ®5 into Eq.24 with respect to the first moment, we have:

dmy Im?
— = —— 26
dt k (26)
Also note that Eg23 can be approximated with= 0 as:
ds X
= Is . 27
7 mylS (27)

We then divide Eg26 by Eq.27, integrate fron0 to ¢ and solve fomm:
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_ Ry (Sw)""
TN (Sw)) | @9

remembering that at time @(0) is the mean of the disease reproductive r&ig, We now sub-

stitute Eq.28 into Eq. 27 to derive an ordinary differential equation for the total population size

S;
. - A 1/k
as Roy [ S(t) A
LA A ) 2
o N (S(O) IS (29)
This gives the following set of ordinary differential equations:
ds __Roy (S(t))”’“
a — ns0) (30)
dE Roy ( S(t) ) L/k
— = —SI|{—= —aF
dt v T\ 50 =

wherek is the inverse of the square root of the coefficient of variation of the distributi® atross
individual hostsk is thus an inverse measure of the variability in susceptibility among individuals in
the population. More susceptible individuals will acquire smallpox earlier in the outbreak (11). As
the epidemic progresses, susceptibility of the noninfected decrea&gssscaled by smaller and
smaller values of(¢)/5(0). The larger the value df, the closer the model is to the homogeneous
model (Eq. 1) and models with values df > 200 are nearly indistinguishable from models that
assume all individuals are identical.

Note that, in numerically solving these and all other differential equations, we used an automatic
second- and third-order pair step-size Runge-Kutta-Fehlberg integration method or a simple fourth-
and fifth-order Runge-Kutta algorithm (Matlab; Mathworks, Natick, NA). In general, the SEIR
equations (Eql) are well known for their numeric stability (i.e., the state variables change very
smoothly over time) (11), and the use of both integration methods noted above perform well with

such equations (12).
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